
1. Introduction
Ocean circulation emerges from a suite of linear and nonlinear dynamical processes that act over a broad range of 
spatial and temporal scales. The flow field is markedly inhomogeneous and characterized by waves, instabilities, 
and turbulent eddies, each of which are subject to a variety of energetic sources and sinks. The mesoscale defines 
a key band of spatial scales where ocean flows are largely geostrophic and where kinetic energy (KE) peaks 
(Storer et al., 2022; Wunsch, 2007). Correspondingly, it is widely recognized that flow at the ocean mesoscales, 
and its response to changes in atmospheric forcing, are fundamental to the large-scale circulation and central for 
regional and global transport of heat and biogeochemical tracers (Ferrari & Wunsch, 2009).

Abstract We expand on a recent determination of the first global energy spectrum of the ocean's 
surface geostrophic circulation (Storer et al., 2022, https://doi.org/10.1038/s41467-022-33031-3) using a 
coarse-graining (CG) method. We compare spectra from CG to those from spherical harmonics by treating 
land in a manner consistent with the boundary conditions. While the two methods yield qualitatively 
consistent domain-averaged results, spherical harmonics spectra are too noisy at gyre-scales (>1,000 km). 
More importantly, spherical harmonics are inherently global and cannot provide local information connecting 
scales with currents geographically. CG shows that the extra-tropics mesoscales (100–500 km) have a 
root-mean-square (rms) velocity of ∼15 cm/s, which increases to ∼30–40 cm/s locally in the Gulf Stream 
and Kuroshio and to ∼16–28 cm/s in the ACC. There is notable hemispheric asymmetry in mesoscale 
energy-per-area, which is higher in the north due to continental boundaries. We estimate that ≈25%–50% 
of total geostrophic energy is at scales smaller than 100 km, and is un(der)-resolved by pre-SWOT satellite 
products. Spectra of the time-mean circulation show that most of its energy (up to 70%) resides in stationary 
eddies with characteristic scales smaller than (<500 km). This highlights the preponderance of “standing” 
small-scale structures in the global ocean due to the temporally coherent forcing by boundaries. By 
coarse-graining in space and time, we compute the first spatio-temporal global spectrum of geostrophic 
circulation from AVISO and NEMO. These spectra show that every length-scale evolves over a wide range of 
time-scales with a consistent peak at ≈200 km and ≈2–3 weeks.

Plain Language Summary Traditionally, “eddies” are identified as time-varying features relative 
to a background time-mean flow. As such, “mean” does not imply large length-scale. Standing eddies or 
meanders due to topography have little time-variation, but can have significant energy at small length-scales 
that are unresolved and need to be parameterized in coarse climate simulations. Similarly, “eddy” or 
“time-varying” do not imply small length-scale, such as large-scale motions from Rossby waves or fluctuations 
of the Kuroshio. Another common method is Fourier analysis in “representative” ocean boxes that cannot 
capture the circulation's planetary scales. We overcome these limitations thanks to recent advances: (a) a 
method for calculating spectra by coarse-graining, (b) properly defining convolutions on the sphere, which 
“blur” oceanic flow in a way that preserves its underlying symmetries, opening the door for global “wavelet” 
analysis and, more generally, spatial coarse-graining, and (c) FlowSieve: an efficient parallel code. We employ 
coarse-graining in space-time to gain new insights into the global oceanic circulation, including how much 
energy resides in its different spatial structures and how they vary in time.
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However, significant gaps remain in our understanding of the mesoscale flows and their role in ocean circulation 
and climate. In particular, from a numerical modeling perspective, despite the ever-increasing ability to conduct 
simulations with mesoscale eddy-rich Ocean General Circulation Model (OGCM), accurately resolving these 
scales in routine climate-scale (order centuries and longer) simulations remains the exception rather than the 
norm (e.g., see Griffies et al., 2015). We are thus confronted with the need for mesoscale eddy parameterizations 
for the foreseeable future (Pearson et al., 2017).

A central question of physical oceanography, and in particular the eddy parameterization problem, concerns a 
characterization of flow features according to length-scale. This question motivates the goal of this paper, which 
is to provide a length-scale decomposition of the global ocean geostrophic KE, and to study the seasonal varia-
tions of this decomposition. This goal has previously been out of reach due to limitations of the commonly used 
Fourier spectral methods, which are unsuited to global ocean analysis due to the complex geometry of ocean 
basins. We thus make use of a Coarse-Graining (CG) method that does not share the limitations of Fourier anal-
ysis. This paper serves to detail the use of coarse-graining for the purpose of decomposing ocean KE, and in so 
doing we uncover novel features of the ocean surface circulation as a function of length and time scales.

1.1. Fourier Methods for the Ocean

It is common to quantify the spectral distribution in scale of ocean KE via Fourier transforms computed either 
along transects or within regions (e.g., Callies & Wu,  2019; Chen et  al.,  2015; Fu & Smith,  1996; Rocha 
et al., 2016; Khatri et al., 2018), as well as to perform time-decomposition of the flow into its frequency spectra 
(e.g., Arbic et al., 2012; O’Rourke et al., 2018). This approach has rendered great insights into the length and 
time scales of oceanic motion and the cascade of energy through these scales (Arbic et al., 2013, 2014; Capet 
et al., 2008; Schlösser & Eden, 2007; Scott & Arbic, 2007; Scott & Wang, 2005; Xu et al., 2011). However, it 
has notable limitations for the ocean where the spatial domain is generally not periodic, thus necessitating adjust-
ments to the data (e.g., by tapering) before applying Fourier transforms.

Methods to produce an artificially periodic data set can introduce spurious gradients, length-scales, and flow 
features not present in the original data (Sadek & Aluie, 2018). A related limitation concerns the chosen region 
size, with this size introducing an artificial upper length scale cutoff. In this manner, no scales are included 
that are larger than the region size even if larger structures exist in the ocean. Furthermore, the data is typically 
assumed to lie on a flat tangent plane to enable the use of Cartesian coordinates. However, if the region becomes 
large enough to sample the earth's curvature, then that puts into question the use of the familiar Cartesian Fourier 
analysis of sines and cosines.

We have previously compared coarse-graining methods with traditional Fourier methods, and shown that where 
Fourier methods are valid, both methods agree (Storer et al., 2022). An important advantage of coarse-graining 
is that it is not limited to an ocean box and allows us to probe length-scales extending to the planet's circumfer-
ence. Moreover, unlike Fourier analysis in box regions, which cannot account for the global energy in the ocean, 
coarse-graining satisfies energy conservation (Sadek & Aluie, 2018) as we discuss more below.

Spherical harmonics transforms are an extension of Fourier (spectral) methods to the full globe, and are often 
used in atmospheric modeling (Satoh, 2004). Spherical harmonics are basis functions that are defined over the 
entire sphere and are not restricted to the ocean domain. For this reason, oceanographic analysis tends to employ 
spherical harmonics less often than atmospheric science analysis, due to the presence of continental boundaries. 
Ocean tide models are a notable exception, with tide models using spherical harmonics in their computation of 
the self-attraction and loading effects (e.g., Hendershott, 1972; Ray, 1998). Ocean tide models often set ocean 
quantities such as sea surface height (SSH) to zero over continents, which introduces some Gibbs ringing but 
this tends to be small because the higher-order spherical harmonics leading to the Gibbs effects are subdominant, 
weighted by small number (Arbic, 2022; Arbic et al., 2004). During early days of satellite altimetry, there were 
attempts at utilizing spherical harmonics to characterize the frequency-wavenumber spectrum of the ocean's 
global circulation (Wunsch, 1991; Wunsch & Stammer, 1995). These studies analyzed SSH anomalies and chose 
nominal SSH values over land. SSH over land was set to the time average of the zonal mean absolute SSH. 
However, the authors were aware that their choice for land treatment was somewhat ad hoc, without dynamical 
justification, as stated in Wunsch and Stammer (1995): “…we make no claim that we have made the best possible 
choice.” It seems that usage of spherical harmonics for analyzing the oceanic circulation was largely abandoned 
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after these attempts during the early days of satellite altimetry. In this paper, we revisit spherical harmonics trans-
form in Section 3.5 and show that despite its important limitations, the method can yield meaningful results if 
land is treated in a manner that is consistent with boundary conditions of the ocean's dynamics.

1.2. Eddy and Mean Flow Decomposition: Reynolds Averages

A traditional approach to extract “eddies” from a flow uses time or ensemble averaging. This approach is rela-
tively simple operationally and is in accord with the common practice in atmospheric and oceanic sciences of 
studying long-term climate means and fluctuations relative to that mean. As part of this decomposition for turbu-
lent flow, we typically utilize the time averaging operator as a Reynolds averaging (RA) operator, whereby the 
average of a fluctuating quantity vanishes (Vallis, 2017). The choice of Reynolds decomposition by time averag-
ing is largely based on practical considerations, with ensemble averages being unavailable for most applications 
(although see (Uchida et al., 2021) for a recent example with fine resolution regional ocean simulations).

Within the traditional decomposition, time-mean or ensemble-mean do not necessarily imply a large length-scale 
flow as we shall discuss in this paper. For example, standing eddies or stationary meanders due to topography 
(Youngs et al., 2017) have little temporal or statistical fluctuations but can have spatial structure at length-scales 

𝐴𝐴 (100) km or smaller. Similarly, within a Reynolds decomposition, “eddy” does not necessarily imply small 
length-scale. For example, a time averaging based decomposition would ascribe eddying motion to large-scale 
Rossby waves (Kessler, 1990) or variations in the Kuroshio Current's path (Kawabe, 1995).

By construction, a Reynolds decomposition into a mean and an “eddy” limits our ability to analyze tempo-
ral variability, from intra-annual to inter-annual (Bryan et  al.,  2014; Griffies et  al.,  2015), of the multiscale 
coupling and evolution of different length-scales, including those that need to be resolved/predicted in global 
climate (coarse-grid) models. Therefore, it offers limited guidance for coarse-resolution models and no control 
over the specific physical length which partitions oceanic flow into “large” and “small.” In other words, the 
set of length-scales constituting the large-scale flow cannot be varied/controlled to be consistent with those 
length-scales resolved in a coarse climate simulation. In this sense, the traditional mean-eddy decomposition 
cannot help with on-going efforts to develop “scale-aware” parameterizations (Jansen et  al.,  2019; Pearson 
et  al.,  2017; Ringler et  al.,  2013; Zanna et  al.,  2017), including those using data-driven or machine learning 
approaches (Ross et al., 2023; Ryzhov et al., 2020).

1.3. Empirical Orthogonal Functions

Empirical Orthogonal Functions (EOFs) offer yet another approach for decomposing the oceanic flow by project-
ing onto orthogonal basis functions or “empirical modes” that are derived from the data itself. EOF is also 
known as Karhunen-Loeve decomposition, Principal Component Analysis or Proper Orthogonal Decomposition 
in other fields (Kac & Siegert,  1947; Karhunen, 1947; Loeve, 1948), and was introduced to meteorology by 
Lorenz (1956).

EOF analysis is commonly used as a data reduction technique since it offers the most efficient statistical compres-
sion of the data field (Thomson & Emery, 2001). This is because the basis functions are derived from the statis-
tical analysis of the data and do not necessarily correspond to true dynamical modes, although they have yielded 
valuable insight into the oceanic dynamics on climate scales (e.g., Di Lorenzo et al., 2008; Trenberth, 1975). The 
limitation of EOFs stems from our lack in understanding of the dynamics governing the basis functions. More-
over, it is difficult to associate EOFs with lengthscales or timescales since each empirical mode lumps together 
variations over all frequency and wavenumber bands. This approach muddles the interpretation of EOF spectra 
and their connection to spectral slopes predicted by theory (Uchida et al., 2021).

1.4. Coarse-Graining

In order to understand the multiscale nature of oceanic flows, while simultaneously resolving them in space 
and in time, we use a “coarse-graining” framework that is relatively new in physical oceanography (Aluie 
et al., 2018; Barkan et al., 2021; Busecke & Abernathey, 2019; Contreras et al., 2023; Haigh et al., 2021; Khani & 
Dawson, 2023; Khatri et al., 2023; Loose et al., 2023; Rai et al., 2021; Schubert et al., 2020; Srinivasan et al., 2019). 
It is a very general approach to decompose complex flows, with rigorous foundations initially developed to model 
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(Germano, 1992; Meneveau, 1994) and analyze (Eyink, 1995, 2005) turbulence. Aluie (2017) provides a theo-
retical discussion of coarse-graining and its connection to other methods in physics. Wavelet analysis, which has 
been recently used by Uchida et al. (2023) to analyze quasigeostrophic turbulence, can be regarded as a special 
case of coarse-graining by choosing the convolution kernel to be a wavelet (Sadek & Aluie, 2018). The approach 
has been recently generalized to account for the spherical geometry of flow on Earth (Aluie, 2019), and applied 
to study the nonlinear cascade in the North Atlantic from an eddying simulation (Aluie et al., 2018).

The coarse-graining framework is very useful from the standpoint of ocean subgrid scale parameterizations 
(Fox-Kemper et al., 2011; Grooms et al., 2021; Haigh et al., 2020; Jansen et al., 2019; Khani et al., 2019; Stanley 
et al., 2020; Zanna et al., 2017). Namely, it provides a theoretical basis for constructing subgrid closures that 
faithfully reflect the dynamics at unresolved scales. A primary objective in ocean modeling is practical: an accu-
rate subgrid parameterization that is numerically stable. Significant advances have been achieved in this regard in 
the fluid dynamics and turbulence community (Biferale et al., 2019; Buzzicotti, Aluie, et al., 2018; Buzzicotti & 
Clark Di Leoni, 2020; Buzzicotti, Linkmann, et al., 2018; Di Leoni et al., 2020; Linkmann et al., 2018; Piomelli 
et al., 1991), and the field of large-eddy simulation (LES) is well-established (Meneveau & Katz, 2000).

Our use of coarse-graining supports the needs of parameterization, but our primary objective is to characterize the 
fundamental dynamics of the flow at all length scales. Even within the wider fluid dynamics community, much 
less work has been done in this regard, that is, using coarse-graining as a “probe” of the fundamental scale-physics. 
For example, LES sub-grid parameterization studies are seldom concerned with using coarse-graining to probe 
the energy pathways across the entire range of scales, such as the cascade (Aluie et al., 2012; Buzzicotti, Aluie, 
et al., 2018; Buzzicotti, Linkmann, et al., 2018; Buzzicotti & Tauzin, 2021; Eyink, 1995; Eyink & Aluie, 2009; 
Kelley & Ouellette, 2011; Rivera et al., 2014), forcing (Aluie, 2013; Rai et al., 2021; Zhao et al., 2022), dissipa-
tion (Zhao & Aluie, 2018), or the range of coupling between different scales (Aluie & Eyink, 2009; Eyink, 2005).

As an important case in point, despite LES having become a well established field in fluid dynamics since the 
seminal works of Leonard (1974) and Germano (1992), the idea of using coarse-graining in physical space to 
extract the energy content at different scales; that is, the spectrum, was only recently established and demon-
strated by Sadek and Aluie (2018). This method is central to our calculation here of the spectrum for the oceanic 
general circulation. A main advantage of coarse-graining is that it allows us to decompose different length scales 
in a flow, at any geographic location and any instant of time, without relying on assumptions of homogeneity, 
isotropy or domain periodicity. This generality makes it ideally suited for studying oceanic flows with complex 
continental boundaries over the entire globe or in any particular regions of interest and at any time.

1.5. Key Results and Outline of This Paper

In this paper we make use of the coarse-graining method on a satellite sea surface product and an OGCM simu-
lation. To directly compare the two products, we focus on geostrophic components of the horizontal surface 
velocity as diagnosed from sea level. Here, we highlight key novel results from this analysis. First, we show that 
spectra from coarse-graining and spherical harmonics of the global circulation are consistent but the latter cannot 
yield spatially local information. We show that the typical velocity of mesoscales is of the order of 15 cm/s, but 
reaches 30–40 cm/s in western boundary currents and 16–28 cm/s in the ACC. We find notable hemispheric 
asymmetry in mesoscale energy-per-area, which is higher in the north. This asymmtery is compensated by the 
south having more energy-per-area at gyre-scales, such that across all (resolved) scales, the two hemispheres have 
comparable energy-per-area. From our spectra, we can estimate that ≈25%–50% of total geostrophic energy is at 
scales smaller than 100 km, and is un(der)-resolved by pre-SWOT satellite products. Spectra of the time-mean 
velocity show that most (up to 70%) energy resides in “standing” small-scale eddies <500 km. This highlights 
the global prevalence of stationary eddies arising from boundary forcing, which is coherent in time and is distinct 
from the baroclinic instability that is regarded as the main driver of mesoscales. By coarse-graining in space and 
time, we compute the first spatio-temporal global spectrum of geostrophic circulation from AVISO and NEMO. 
These spectra show that every length-scale evolves over a wide range of time-scales with a consistent peak at 
≈200 km and ≈3 weeks.

The paper is organized as follows. In Section 2, we present the data products used in our analysis. In Section 3 we 
give details on the coarse-graining and the RA methods used in this work and we present the comparison between 
CG and spherical harmonics energy spectra. In Section 4 we discuss the main results from the CG analysis; the 
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2D spatio-temporal energy spectrum of ocean surface circulation and spectra of the time-mean and fluctuating 
(or “eddy”) components from RA. At the end of Section 4 we compare the surface dynamics spatio-temporal 
decomposition from satellite and numerical model data. In Section 5 we present our conclusions. Appendix A 
discusses some technical choices we used when coarse-graining.

2. Satellite and Numerical Model Data
We examine the horizontal geostrophic velocity of surface ocean currents from a global numerical model simu-
lation and from an analysis of satellite sea surface altimetry, focusing on regions to the north and south of 
the tropics, [15°N–90°N] and [15°S–90°S]. We avoid the tropics since our interest is with the geostrophic 
flows in the higher latitudes, and only the surface geostrophic current is available from satellite altimetry. 
Details of the two products are given in the following paragraphs, and both were publicly accessed through the 
Copernicus Marine Environment Monitoring Service webpage, https://marine.copernicus.eu/services-portfolio/
access-to-products/.

2.1. AVISO Analysis of Satellite Altimetry

Geostrophic currents are obtained from the AVISO + analysis of multi-mission satellite altimetry measurements 
for SSH (Pujol et al., 2016). We used the Level 4 (L4) post-processed data set of daily-averaged geostrophic 
velocity, gridded at a resolution of 0.25° × 0.25° and spanning from January 2010 to October 2018. Post process-
ing was performed by the Sea Level Thematic Center (SL TAC) data processing system, which processes data 
from 11 altimeter missions. The product identifier of the AVISO data set used in this work is “SEALEVEL_
GLO_PHY_L4_MY_008_047” (https://doi.org/10.48670/moi-00148).

2.2. Numerical Simulation

We analyze 1-day averaged surface geostrophic currents from the NEMO numerical modeling framework, 
which is coupled to the Met Office Unified Model atmosphere component, and the Los Alamos sea ice model 
(CICE). The NEMO data set consists of weakly coupled ocean-atmosphere data assimilation and forecast 
system, with data then published on a uniform 1/12° grid. We use daily-averaged data that spans the 4 years 
from 2016 to 2019. More details about the coupled data assimilation system used for the production of the 
NEMO data set can be found in Hewitt et  al.  (2011), Lea et  al.  (2015). The specific product identifier of 
the NEMO data set used here is “GLOBAL_MULTIYEAR_PHY_001_030” (https://doi.org/10.48670/
moi-00021).

3. Coarse-Graining for the Ocean
In this section, we discuss the coarse-graining framework and how it is used to partition energy across length 
scales. We also discuss the traditional approach of decomposition in spherical harmonics and the temporal-based 
RA, in which the flow is decomposed into time-mean and fluctuating components.

3.1. Basics of Coarse-Graining on the Sphere

For any scalar field, F(x), we can calculate its coarse-grained (or low-pass filtered) version, 𝐴𝐴 𝐹𝐹 𝓁𝓁(𝐱𝐱) , by convolving 
F(x) with a normalized filter kernel Gℓ(r),

𝐹𝐹 𝓁𝓁(𝐱𝐱) = 𝐺𝐺𝓁𝓁 ∗ 𝐹𝐹 (𝐱𝐱) (1)

where *, in the context of this work, is convolution on the sphere (Aluie, 2019), x is geographic location on the 
globe, and the kernel Gℓ(x) can be any non-negative function that is spatially localized (i.e., it goes to zero fairly 
rapidly as x → ±∞). The parameter ℓ is a length-scale related to the kernel's “width.” We use the notation 𝐴𝐴 (⋯ )𝓁𝓁 
to denote a coarse-grained field. The kernel is area normalized for all ℓ, so that

∫
𝐺𝐺𝓁𝓁(𝐱𝐱) d = 1, (2)

https://marine.copernicus.eu/services-portfolio/access-to-products/
https://marine.copernicus.eu/services-portfolio/access-to-products/
https://doi.org/10.48670/moi-00148
https://doi.org/10.48670/moi-00021
https://doi.org/10.48670/moi-00021
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where 𝐴𝐴 d is the area element on the sphere. Correspondingly, the convolu-
tion (1) may be interpreted as an average of the function F within a region of 
diameter ℓ centered at location x. By construction, at each point in space, x, 
the coarse-grained field, 𝐴𝐴 𝐹𝐹 𝓁𝓁(𝐱𝐱) , contains information about the scale ℓ.

The above formalism holds for coarse-graining scalar fields. To coarse-grain 
a vector field on a sphere generally requires more work (Aluie,  2019). 
However, since we are concerned only with the surface geostrophic veloc-
ity, u(x, t), in this work, it greatly simplifies our analysis. We assume the 
geostrophic velocity is non-divergent on the two-dimensional spherical 
surface, so that it is related to the geostrophic stream-function ψ via

𝐮𝐮 = �̂�𝒆𝑟𝑟⨲∇𝜓𝜓𝜓 (3)

with 𝐴𝐴 �̂�𝒆𝑟𝑟 the radial unit vector in spherical coordinates, ψ  =  ηg/f, g is the 
gravitational acceleration, η the free SSH, and the Coriolis parameter, 
f = 2 Ω sin(ϕ), is a function of latitude ϕ, where Ω is Earth's spin rate.

Aluie  (2019) showed that for non-divergent vector fields such as in Equa-
tion 3, coarse-graining u is equivalent to coarse-graining each of its Cartesian 
components. We therefore transform the vector from spherical (ur, uλ, uϕ) to 
planetary Cartesian coordinates (ux, uy, uz) via:

�� = ��cos(�)cos(�) − ��sin(�) − ��cos(�)sin(�)

�� = ��sin(�)cos(�) + ��cos(�) − ��sin(�)sin(�)

�� = ��sin(�) + ��cos(�)

 (4)

where λ, ϕ are longitude and latitude, respectively, and uλ, uϕ are the zonal and meridional velocity components, 
respectively. The radial velocity component, ur = 0 for the geostrophic flow. The conversion to Cartesian velocity 
components is necessary since the basis vectors for spherical velocities depend on space, while the Cartesian 
velocity basis vectors are spatially independent. Figure 1 illustrates the spatial dependence of the velocity basis 
vectors.

We apply the spherical convolution operation in Equation 1 to each of ux, uy, uz as scalar fields to obtain the 
corresponding coarse-grained fields 𝐴𝐴 𝑢𝑢𝑥𝑥 , 𝐴𝐴 𝑢𝑢𝑦𝑦 , 𝐴𝐴 𝑢𝑢𝑧𝑧 , then retrieve the coarse-grained velocity, 𝐴𝐴 𝐮𝐮𝓁𝓁 in spherical coordi-
nates via

coarse radial flow = ��cos(�)cos(�) + ��sin(�)cos(�) + ��sin(�) = 0

coarse zonal flow = −��sin(�) + ��cos(�)

coarse meridional flow = −��cos(�)sin(�) − ��sin(�)sin(�) + ��cos(�).

 (5)

That the “coarse-grained radial flow” (i.e., “vertical” flow, parallel to gravity) vanishes is not obvious and was 
proved in Aluie (2019) and demonstrated numerically in Aluie and Teeraratkul (2023). We emphasize that the 
coarse-graining algorithm we just described is valid only for non-divergent vectors such as u in Equation 3. Signif-
icant errors can arise for a general flow field (Aluie & Teeraratkul, 2023), where the complete coarse-graining 
formalism of Aluie (2019) is necessary.

We use the coarse-graining kernel

𝐺𝐺𝓁𝓁(𝐱𝐱) =
𝐴𝐴

2

(

1 − tanh

(

10

(

𝛾𝛾(𝐱𝐱)

𝓁𝓁∕2
− 1

)))

, (6)

which is essentially a top-hat kernel (Pope, 2001) with graded edges. We use geodesic distance, γ(x), between 
any location x = (λ, ϕ) on Earth's surface relative to location (λ0, ϕ0) where coarse-graining is being performed, 
which we calculate using

𝛾𝛾(𝐱𝐱) = 𝑅𝑅Eartharccos[sin(𝜙𝜙)sin(𝜙𝜙0) + cos(𝜙𝜙)cos(𝜙𝜙0)cos(𝜆𝜆 − 𝜆𝜆0)]. (7)

Figure 1. Illustration of [blue arrows] Cartesian velocity basis vectors and 
[red arrows] Spherical velocity basis vectors at selected latitude/longitude 
points. While the spherical basis vectors point in different directions at each 
location, the Cartesian vectors always point in the same direction. When the 
velocity field is laterally non-divergent (or toroidal) on the spherical surface, 
using a Cartesian representation of the velocity field allows us to avoid 
complications from Christoffel symbols (Aluie, 2019). Note that for general 
(toroidal + poloidal) velocity fields involving overturning, surface divergence, 
and up/downwelling, the complete coarse-graining formalism of Aluie (2019) 
is necessary.
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with REarth = 6,371 km for Earth's radius. In Equation 6, A is a normalization factor, evaluated numerically, to 
ensure Gℓ area integrates to unity as per Equation 2. In general, we are not restricted to this choice of kernel; 
however, we use it because of its well-defined characteristic width ℓ. Indeed, a convolution with Gℓ in Equation 6 
is a spatial analogue to an ℓ-day running time-average (e.g., see Section 4.4).

3.1.1. Reflected Hemispheres

A basic complication that can arise when considering very large filter scales is that the filter may become incon-
gruous with studying a smaller sub-domain. In this work, we are primarily concerned with the extra-tropical 
hemispheres: [−90°N, −15°N] and [15°N, 90°N]. However, at very large length scales information from the 
equatorial band and opposing hemisphere can become introduced through an expanded filter kernel. To resolve 
this issue, a “reflected hemispheres” approach is used, wherein one hemisphere is reflected and copied onto the 
other hemisphere, essentially producing a world with two north, or two south hemispheres. This is the same  meth-
odology used in our previous work (Storer et al., 2022).

It is worth noting that the reflected hemispheres and equatorial masking would not be necessary in a context 
where non-geostrophic velocities are considered and a global power spectrum is desired. They are used here 
because we wish to disentangle the power spectra of the geostrophic flow in the North and South.

3.2. Partitioning the Geostrophic Kinetic Energy

From the coarse-grained horizontal geostrophic velocity field, 𝐴𝐴 𝐮𝐮𝓁𝓁(𝐱𝐱, 𝑡𝑡) , following Equation 1 as prescribed in 
Aluie (2019), we partition KE into different sets of length-scales:

 =
1

2
|𝐮𝐮(𝐱𝐱, 𝑡𝑡)|2(bareKE) (8)

𝓁𝓁 =
1

2
|𝐮𝐮𝓁𝓁(𝐱𝐱, 𝑡𝑡)|

2(coarseKE) (9)

<𝓁𝓁 =
1

2

(

|𝐮𝐮(𝐱𝐱, 𝑡𝑡)|2
𝓁𝓁
− |𝐮𝐮𝓁𝓁(𝐱𝐱, 𝑡𝑡)|

2

)

(fineKE). (10)

The “bare KE” in Equation 8 is the KE per unit mass (m 2/s 2) of the original geostrophic flow that includes all 
scales; “coarse KE” in Equation  9 represents energy of the coarse-grained geostrophic flow at length-scales 
larger than ℓ; and “fine KE” in Equation 10 accounts for geostrophic energy at scales smaller than ℓ, which we 
discuss more in the following two paragraphs. Partitioning geostrophic energy across scales is not trivial since 
one needs to ensure that such quantities are physically valid in the sense described by Germano  (1992) and 
Vreman et al. (1994). In particular, it is important to ensure that the partitioned KE is (a) positive semi-definite 
(≥0) at every x and every time, and (b) that summing the partitions yields the total energy.

While it is clear that 𝐴𝐴 𝓁𝓁 ≥ 0 in Equation 9, this property is not obvious for 𝐴𝐴 <𝓁𝓁 in Equation 10. Moreover, it 
may not be obvious why 𝐴𝐴 <𝓁𝓁 should represent energy at scales smaller than ℓ. Vreman et al. (1994) showed that 

𝐴𝐴 <𝓁𝓁 ≥ 0 if Gℓ ≥ 0, whereas 𝐴𝐴 <𝓁𝓁 can be negative if the coarse-graining kernel Gℓ is not positive semi-definite. A 
proof using convexity of the square function, (…) 2, illustrates why the first term 𝐴𝐴 |𝐮𝐮(𝐱𝐱, 𝑡𝑡)|2𝓁𝓁 in Equation 10 has an 
overbar rather than defining fine KE as 𝐴𝐴

(

|𝐮𝐮(𝐱𝐱, 𝑡𝑡)|2 − |𝐮𝐮𝓁𝓁(𝐱𝐱, 𝑡𝑡)|
2
)

∕2 . The proof from Sadek and Aluie (2018) is as 
follows. When using Gℓ ≥ 0, coarse-graining 𝐴𝐴 (. . . )𝓁𝓁 is a local averaging operation. From Jensen's inequality (Lieb 
& Loss, 2001), we know that 𝐴𝐴 [ (𝐮𝐮)]𝓁𝓁 ≥ 

(

𝐮𝐮𝓁𝓁

)

 for any convex operation, 𝐴𝐴  . Since 𝐴𝐴  (𝐮𝐮) = |𝐮𝐮|
2 is convex, we are 

guaranteed that 𝐴𝐴 |𝐮𝐮(𝐱𝐱, 𝑡𝑡)|2
𝓁𝓁
≥ |𝐮𝐮𝓁𝓁(𝐱𝐱, 𝑡𝑡)|

2 and, therefore, 𝐴𝐴 <𝓁𝓁 ≥ 0 if the kernel Gℓ(r) ≥ 0, which is the case for our 
study (see Equation 6).

Regarding condition (ii) on the sum of energy partitions, Aluie  (2019) proved that (for a normalized 
Gℓ) the coarse-graining operation on the sphere in Equation  1 preserves the spatial average of any field, 

𝐴𝐴

{

𝐹𝐹 𝓁𝓁(𝐱𝐱)

}

= {𝐹𝐹 (𝐱𝐱)} , where 𝐴𝐴 {. . . } = (Area)
−1
∫ d(. . . ) . Therefore, we have 𝐴𝐴

{

|𝐮𝐮|
2

𝓁𝓁

}

=
{

|𝐮𝐮|
2
}

 . This property 

guarantees that the sum of coarse KE and fine KE yields the total KE after integrating in space and in the 
absence of land,

{} = {𝓁𝓁} + {<𝓁𝓁}. (11)
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Equation 11 justifies our interpretation of 𝐴𝐴 <𝓁𝓁 as energy at scales smaller than ℓ, since it is the difference between 
bare and coarse KE, on average, while also being positive locally.

3.3. Treatment of Land-Sea Boundaries

In the above decomposition of energy, a choice has to be made in the presence of land. Storer et  al.  (2022) 
provides some discussion on the subject, while here we discuss three possibilities, along with their pros and cons, 
in more detail.

3.3.1. Deformed Kernel

The “deformed kernel” approach is realized by coarse-graining ocean points near land with a kernel that is 
deformed or masked to avoid overlapping with land points. Such a deformed kernel must be renormalized to 
yield an average over just ocean points rather than the whole sphere. The main advantage of this approach is 
that it treats land as a well-defined boundary that is separate from the ocean regardless of the coarse-graining 
length-scale. It is also familiar to ocean modelers who routinely mask values over land and do not include such 
masked values when performing area averages.

However, the deformed kernel has disadvantages that motivate against its use for coarse-graining ocean flows. 
First, a kernel that is inhomogeneous (i.e., changes shape depending on geographic location) does not conserve 
domain averages, including the KE of the flow. The reason for this failed conservation is detailed in Appendix A 
and demonstrated in Figure 2 (blue plot). This figure shows how a kernel that is deformed (via masking) to 
exclude land does not yield 100% of the total energy, that is, it does not satisfy Equation 11. As a result, it can 
yield total energy that is either less than 100% (e.g., over scales larger than 500 km in Figure 2) or greater than 
100% (e.g., between 100 and 400 km in Figure 2).

For some purposes, the total energy values in Figure 2 are fairly close to 100% (deviations less than 1%) so 
one might argue that the deformed kernel is suitable in practice. Nonetheless, a more basic reason to avoid 
deformed kernels is that such inhomogeneous kernels (which also include averaging values at adjacent grid-cells 
or block-averaging on the sphere) do not commute with spatial derivatives. Consequently, the coarse-grained 
field resulting from a deformed kernel is not guaranteed to satisfy fundamental flow properties exhibited by the 
unaveraged flow, such as non-divergence, geostrophy, and the vorticity present at various scales. These consider-
ations are further detailed in Aluie et al. (2018) and Aluie (2019).

Figure 2. Percentage of total energy recovered by summing the fine and coarse kinetic energy terms in Equation 11 obtained 
by coarse-graining over the full ocean surface as a function of the filter scale, kℓ = 1/ℓ. The three lines correspond to the three 
approaches described in Section 3.3, namely, filtering with a fixed kernel shape and excluding/including land (orange/green 
lines) when tallying the total energy. We also coarse-grain with a deformable filter kernel to exclude the filter overlapping 
land regions (blue line).
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3.3.2. Fixed Kernel

The “fixed kernel,” also used in Figure 2, is homogeneous so that it preserves its shape at all locations. When 
coarse-graining ocean points near land such that the kernel overlaps land points, we treat land points in a manner 
consistent with the boundary conditions between land and ocean. For example, if we are coarse-graining the 
velocity, we treat land as water with zero velocity, which is consistent with the formulation of OGCM where 
land is often treated as a region of zero velocity. Furthermore, we include these zero land values as part of the 
coarse-graining operation.

This choice may seem unnatural since we are including unphysical values within the coarse-graining operation. 
However, it is helpful to think of coarse-graining as an operation analogous to removing one's eyeglasses, rendering 
an image fuzzy and boundaries less well-defined. When coarse-graining at a scale ℓ, the precise boundary between 
land and ocean becomes blurred at that scale and its precise location becomes less certain. The coarse-grained 
velocity, 𝐴𝐴 𝐮𝐮𝓁𝓁 , can be nonzero within a distance ℓ/2 beyond the continental boundary over land. Forfeiting exact 
spatial localization in order to gain scale information is theoretically inevitable due to the uncertainty principle, 
which prevents the simultaneous localization of data in physical-space and in scale-space (Sogge, 2008; Stein 
& Weiss, 1971). The main advantage of the “Fixed Kernel” choice is ensuring that coarse-graining and spatial 
derivatives commute so that it preserves the fundamental physical properties (symmetries) of the flow. Further 
discussion of these issues can be found in Aluie et al. (2018) and Aluie (2019).

3.3.3. Fixed Kernel With or Without Land

After coarse-graining the velocity field with a fixed kernel, we show in Figure 2 the level of energy conservation 
if we include or exclude land points from the final tally of KE. We call these, respectively, the “fixed kernel w/
land” and “fixed kernel w/o land.” The latter (orange line) highlights how coarse-graining smears energy onto 
land (within ℓ/2 distance inland) such that if we exclude land from the final tally, we find some leakage of energy 
onto land, which increases as the coarse-graining scale ℓ increases. We find energy leakage of the order of 1% at 
coarse-graining scales <100 km, ≈4% for scales ≲500 km, and up to 12% at scales of order 2,000 km. However, 
if we choose to include land in our final tally, we are guaranteed to conserve 100% of the energy by satisfying 
Equation 11, thus ensuring that the energy budget is fully closed. After all, in an ocean model on a discrete grid, 
the land boundary is only expected to be accurate within a Δx distance from any estimate of the truth, where Δx 
is analogous to our coarse-graining scale ℓ.

3.3.4. What We Use Here

While we have implemented all three approaches to coarse-graining, unless otherwise stated in this work, we 
choose the fixed kernel w/land by including land regions that have non-zero velocity (again, as realized through 
leakage from nearby ocean values). Storer et al. (2022) showed that deformed and fixed kernels yield qualita-
tively consistent results for spectra. We avoid coarse-graining with a deformed kernel to remain consistent with 
previous work (Aluie et al., 2018) and with forthcoming studies where we apply coarse-graining to the dynamical 
equations where commuting with spatial derivatives is essential.

3.4. The Filtering Spectrum

Sadek and Aluie (2018) showed how coarse-graining can be used to extract the energy content at different length 
scales. They do so by partitioning the velocity into discrete length scale bands rather than the two sets (coarse KE 
and fine KE) in Equations 9 and 10. The resulting quantity is called the filtering spectrum. The filtering spectrum 
is distinct from the traditional Fourier spectrum, with coarse-graining offering a way to measure energy distribu-
tions without relying on a Fourier transform, thus avoiding the limitations noted in Section 1.1.

The filtering spectrum is obtained by differentiating in scale the coarse KE

𝐸𝐸(𝑘𝑘𝓁𝓁) =
𝑑𝑑

𝑑𝑑𝑘𝑘𝓁𝓁

{𝓁𝓁} = −𝓁𝓁2 𝑑𝑑

𝑑𝑑𝓁𝓁
{𝓁𝓁}, (12)

where kℓ = 1/ℓ is the “filtering wavenumber.” Sadek and Aluie (2018) showed that the filtering spectrum satisfies 
energy conservation and that 𝐴𝐴 𝐸𝐸(𝑘𝑘𝓁𝓁 , 𝑡𝑡) ≥ 0 when using certain types of kernels (e.g., concave) of which the top-hat 
kernel is an example. Moreover, Sadek and Aluie (2018) identified the conditions on Gℓ for 𝐴𝐴 𝐸𝐸(𝑘𝑘𝓁𝓁 , 𝑡𝑡) to be mean-
ingful in the sense that its scaling agrees with that of the traditional Fourier spectrum (when a Fourier analysis 
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is possible, such as in periodic domains). Below, we shall sometimes refer to 𝐴𝐴 𝓁𝓁 as the “cumulative spectrum” 
following Sadek and Aluie (2018) since it accounts for all energy at scales larger than ℓ. In contrast, 𝐴𝐴 𝐸𝐸(𝑘𝑘𝓁𝓁 , 𝑡𝑡) , is 
the spectral energy density at a specific scale ℓ.

3.5. Comparison With Spherical Harmonics

Our previous results on spectra using CG in Storer et al. (2022) provide justification for using spherical harmon-
ics on the global ocean and a guide for treating land in a manner that is consistent with boundary conditions. 
For the ocean velocity, the boundary conditions are zero normal velocity (no flow through) and zero tangential 
velocity (no-slip). Therefore, when using spherical harmonics, we set land to have zero velocity values, similar 
to what we do with the CG method.

Figure 3 compares spectra from CG to those from spherical harmonics. It uses a single daily average of the 
AVISO data with spherical harmonics, coarse-grained with a deforming kernel, and coarse-grained with a fixed 
kernel including land regions. The spherical harmonic analysis was performed using PySHTools (Wieczorek & 
Meschede, 2018) on the AVISO data with reflected hemispheres.

The two CG methods yield qualitatively consistent domain-averaged results, such as the broad mesoscale 
peak, the NH gyre peak, and the ACC peak. Small deviations between the deformable and fixed kernels are 
only visible on the larger scales, where the deformable filter is not expected to conserve total energy. Given 
these results, we focus on the comparison between the fixed kernel CG and the spherical harmonic spectra. 
In this case, both spectra integrate to the same total energy. However, the spherical harmonics spectra are 
too noisy at gyre-scales (>1,000 km). At these large length-scales (low modes), spherical harmonics spectra 
have poor scale resolution because the eigenmodes are spaced far apart; in integer multiples of the funda-
mental mode. It is particularly noticeable around the ACC peak at ℓ ≈ 10 4 km. This limitation is shared by 
Fourier methods in a Cartesian box. This is not a limitation for the CG method of computing spectra since it 
conserves energy without relying on the orthogonality structure of an eigenbasis in the strict sense (Sadek & 
Aluie, 2018).

A main disadvantage of spherical harmonics is that they are inherently global and cannot provide local infor-
mation connecting scales with currents geographically. This becomes apparent in spatial maps, such as those in 
Figure 4. In coarse-graining, non-zero current velocities only intrude a distance of ℓ/2 inland from the coast, 
as evidenced by the thin band of dark colors inside the yellow contour lines (coastlines). Moreover, the band 
within the yellow contour is dark, which reinforces that very little energy is distributed over land. Even at a 
1,000 km filter scale, the majority of land retains identically zero velocity, indicated by white. In contrast, even 
at a small filter scale, spherical harmonics generate beams of spectral ringing that extend deep into land regions, 
with non-trivial magnitudes. Worse still, at a 1,000 km filter, the spherical harmonic filtering fills the global 

Figure 3. Power Spectra with Spherical Harmonics and Coarse-Graining Power spectra computed using spherical harmonics 
(solid lines), coarse-graining with a deforming kernel (dashed lines), and coarse-graining with a fixed kernel with land 
(dotted lines). Reflected hemispheres were used to obtain spectra for NH and SH separately. Note that these spectra were 
obtained by masking out only a thin strip [2°S, 2°N] and integrating over the domain to allow for the application of spherical 
harmonic transforms, unlike those of Figure 8 and (Storer et al., 2022) that only integrated over latitudes outside of [15°S, 
15°N], explaining the discrepancy in peak locations.



Journal of Advances in Modeling Earth Systems

BUZZICOTTI ET AL.

10.1029/2023MS003693

11 of 28

ocean with zonal bands, even in the more quiescent open oceans. These ringing features are not present under a 
coarse-graining approach with an appropriately chosen kernel.

In addition, there are practical considerations in regards to comparing coarse-graining with spherical 
harmonics. Like traditional Fourier methods, spherical harmonics require the input data to conform to fairly 
strict structures: uniform lat/lon grids, specific resolution aspect ratios, etc. In contrast, coarse-graining is 
grid agnostic. That is, while the implementation details are different, coarse-graining applies just as well 
to a uniform lat/lon grid as to a generalized non-uniform triangularization grid. While FlowSieve (Storer 
& Aluie,  2023), the coarse-graining package used in this work, at present only accepts rectangular (but 
non-uniform) lat/lon grids, that is a limitation imposed by the current implementation, and not by the under-
lying methodology.

3.6. Reynolds Averaging

We close this section by reviewing basic properties of RA as realized by time averages.

3.6.1. Basics of Reynolds Averaging

Time averaging separates the flow into a time-average/“mean” and a fluctuating/“eddy” as given by 
Pope (2001)

⟨𝐮𝐮⟩(𝐱𝐱) =
1

𝑇𝑇 ∫

𝑡𝑡0+𝑇𝑇

𝑡𝑡0

𝐮𝐮(𝐱𝐱, 𝑡𝑡)d𝑡𝑡, (13)

𝐮𝐮
′(𝐱𝐱, 𝑡𝑡) = 𝐮𝐮(𝐱𝐱, 𝑡𝑡) − ⟨𝐮𝐮⟩(𝐱𝐱), (14)

Figure 4. Filtering Maps with Spherical Harmonics and Coarse-Graining Speed of the large-scale AVISO surface currents 
obtained by [left, AC] spherical harmonics and [right, BD] coarse-graining. Velocity fields are filtered at [top, AB] 250 km 
and [bottom, CD] 1,000 km. Color maps show velocity magnitude on a logarithmic scale, with white indicating identically 
zero values. Yellow contours indicate land boundaries in the unfiltered data. Note how filtering with spherical harmonics, 
even at 250 km, yields non-zero flow over all continents and prominent ringing patterns. This is due to the inherently global 
nature of spherical harmonics, which makes it challenging to infer spatially local information at different scales.
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where 〈u〉 is the mean component, u′ the eddy component, and T represents the entire time record and not just a 
time window. Two key properties of the Reynolds decomposition are

⟨⟨𝐮𝐮⟩⟩ = ⟨𝐮𝐮⟩ and ⟨𝐮𝐮
′
⟩ = 0, (15)

so that the mean of a mean returns the mean (idempotent property) while the mean of the eddy is zero. The result-
ing mean and eddy KE components are respectively given by

𝑀𝑀𝑀𝑀𝑀𝑀(𝐱𝐱) =
1

2
|⟨𝐮𝐮⟩|

2(𝐱𝐱), (16)

𝐸𝐸𝐸𝐸𝐸𝐸(𝐱𝐱, 𝑡𝑡) =
1

2
|𝐮𝐮

′
|

2(𝐱𝐱, 𝑡𝑡). (17)

Notice that the sum of mean and eddy KE is not equal to the total KE. Rather, there is an extra cross term, u′ 
⋅〈u〉, needed to close the budget. However, the cross term is not positive definite and it has a zero time average, 
〈u′ ⋅ u〉 = 0. Following a RA decomposition, the total energy can be written as

(𝐱𝐱, 𝑡𝑡) = 𝐸𝐸𝐸𝐸𝐸𝐸(𝐱𝐱, 𝑡𝑡) +𝑀𝑀𝐸𝐸𝐸𝐸(𝐱𝐱) +
1

2

(

𝐮𝐮
′
⋅ ⟨𝐮𝐮⟩

)

(𝐱𝐱, 𝑡𝑡). (18)

3.6.2. Key Differences Between Reynolds Averaging and Coarse-Graining

A key difference between coarse-graining and Reynolds-averaging is that within RA, applying the averaging 
operation twice on any field yields the same result whereas that property does not hold for coarse-graining with 
non-projector kernels, which produce different filtering results when operating multiple times on the same field 
(Buzzicotti, Aluie, et al., 2018; Buzzicotti, Linkmann, et al., 2018):

⟨⟨𝐹𝐹 ⟩⟩ = ⟨𝐹𝐹 ⟩ whereas 𝐹𝐹 ≠ 𝐹𝐹 𝐹 (19)

where 〈⋅〉 denotes time (or Reynolds) averaging and 𝐴𝐴 ⋅  denotes coarse-graining. Another important difference is 
that a Reynolds average does not provide a control to adjust the partition between the “mean” and “eddy” compo-
nents. That is, a Reynolds decomposition is not a scale decomposition and this point is illustrated in Section 4.4. 
Consequently, the time-mean or ensemble-mean flow is not synonymous with large-scale flow, nor does a Reyn-
olds eddy fluctuation directly correspond to a characteristic fine-scale.

To help understand the above points, we emphasize the distinction between time-scale and decorrelation-time 
for a particular flow feature. While it is generally true that larger (smaller) scales have slower (faster) time-scale 
dynamics, it is not always true that their decorrelation-time follows this relation. As an example, consider station-
ary eddies, such as the Mann eddy in the North Atlantic. Such eddies have a small spatial-scale (relative to the 
gyre or basin) but are persistent in time. As a result, even if the timescale (∼ ℓ/u) for a structure is small when it 
is associated with the relatively fast dynamics of eddying flows, it can be highly correlated (or even stationary) in 
time, so that its contribution to the MKE is not completely removed by a time-average. We show this behavior  in 
Sections 4.4 and 4.5.

4. Analysis Results
In this section we present results of the coarse-graining analysis along with a comparison with RA based on time 
averages. In the second part of this section we present results from coarse-graining in both space and time as a 
means to characterize the time-scales associated with different length-scales.

4.1. Coarse-Graining the Surface Geostrophic Flow From AVISO

We split the geostrophic KE from AVISO into its fine and coarse-grained components following Equations 9 
and 10. For a qualitative appreciation of this decomposition, Figure 5 displays maps of the KE just over the 
Atlantic using two different filter scales, ℓ = 100 km in the top row and ℓ = 400 km in the bottom row. From 
left to right, panels in Figure 5 show the total KE, 𝐴𝐴  , the coarse energy, 𝐴𝐴 𝓁𝓁 , and the fine energy, 𝐴𝐴 <𝓁𝓁 . The fine 
scale KE, 𝐴𝐴 <𝓁𝓁 , represents KE at scales less than ℓ, as represented (or projected) on a grid of resolution Δx ∼ ℓ. 
Notably, as seen in Figure 5, 𝐴𝐴 <𝓁𝓁 does not have small scale features, which results since there is a filter applied 



Journal of Advances in Modeling Earth Systems

BUZZICOTTI ET AL.

10.1029/2023MS003693

13 of 28

to both terms in Equation 10 defining 𝐴𝐴 <𝓁𝓁 . This definition ensures that 𝐴𝐴 <𝓁𝓁 is positive semi-definite at each point 
in space and time.

Visualization of fine KE, 𝐴𝐴 <𝓁𝓁 , is still useful to identify the regions where structures smaller than the filter scale 
are dominant in the ocean. Even so, one may wish to view the alternative quantity

 − 𝓁𝓁 =
1

2

(

|𝐮𝐮(𝐱𝐱, 𝑡𝑡)|
2
− |

|

𝐮𝐮𝓁𝓁(𝐱𝐱, 𝑡𝑡)|
|

2
)

, (20)

which is shown in the right-most column of Figure 5. This quantity reveals more fine scale features since only 
the second term on the right hand side is filtered. However, as discussed in Section 3.1, the energy difference, 

𝐴𝐴  − 𝓁𝓁 , can be negative locally in space, and so it does not serve our purposes for decomposing the energy into 
non-negative terms.

4.2. Reynolds Averaging Decomposition

Here, and in subsequent subsections, we show that the time-mean flow consists of an entire range of length scales 
with substantial contributions from the mesoscale. Figure 6 shows the mean-fluctuation decomposition follow-
ing the RA approach. The maps are focused on the Atlantic region to help reveal details and we show just those 
obtained from AVISO.

The time mean is obtained by averaging the velocity over the whole time series available, spanning 9 years. From 
left to right we show the total energy at a single day, the time mean energy, MKE(x), the fluctuating eddy term, 
EKE(x, t), and the cross term, (u′ ⋅〈u〉)/2.

Figure 5. Maps of the coarse-grained decomposition of kinetic energy (KE) from a single day of the AVISO analysis at two 
different filter scales, ℓ = 100 km (top) and ℓ = 400 km (bottom). Here the bare KE, 𝐴𝐴 (𝐱𝐱, 𝑡𝑡) , is compared with coarse KE, 

𝐴𝐴 𝓁𝓁(𝐱𝐱, 𝑡𝑡) , and fine KE, 𝐴𝐴 <𝓁𝓁(𝐱𝐱, 𝑡𝑡) . The right-most column shows the fine scale term defined by Equation 20, which can yield 
negative values.
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Having used a relatively long time series for averaging, the mean energy in Figure 6 is rather depleted away from 
major current systems, so that the Gulf Stream and the Antarctic Circumpolar Current are quite pronounced 
relative to the gyre interiors. We appreciate from this figure that the mean flow retains a substantial contribution 
from structures with a variety of sizes. In the same way, the “eddy” (or temporally fluctuating) flow in Figure 6 
contains most of the small scale fluctuations but also a substantial contribution from large-scale structures. The 
cross term shown on the right panel of Figure 6 has strong fluctuations around zero, which make its contribution 
almost (but not exactly) zero after a spatial-average. The blending of length scales revealed by these figures 
reflects the inability of time averaging to decompose the KE according to length-scales.

To further investigate the role of the three Reynolds average energy terms, Figure 7 shows their temporal varia-
bility in both hemispheres.

In the first row, we see that EKE constitutes a substantial portion of the total energy 𝐴𝐴  (80%) and their temporal 
evolution is almost indistinguishable. Both EKE and 𝐴𝐴  tend to peak during the spring-summer. The bottom row 
of Figure 7 shows MKE, which is independent of time, and the cross term, which has a zero average. These two 
quantities are much less energetic, with the mean term ≈20% of the total and the cross term fluctuates about its 
zero average without a clear seasonal signal.

4.3. The Filtering Spectrum

In Figure 8 we show the cumulative large-scale energy for the north and south hemispheres as obtained from 
Equation 12 for AVISO and NEMO, as well as the filtering spectra for the Reynolds-decomposed components 
of NEMO: full time signal, 𝐴𝐴 (𝐱𝐱, 𝑡𝑡) , time mean, MKE(x), and time varying, EKE(x, t). In the top panel we show 
the cumulative area-averaged energy spectra, 𝐴𝐴 𝓁𝓁 , as a function of coarse-graining scale. In the center and bottom 
panels, we show the filtering spectrum (cf. Equation 12), in lin-log and log-log scale respectively.

4.3.1. Cumulative Energy Spectra

At the large kℓ (small ℓ) end of the cumulative spectra, we see that all four datasets converge. That is, for both 
NEMO and AVISO, the area-averaged energy density is ≈2 × 10 −2 m 2/s 2 (corresponding to an RMS velocity 
of ≈20 cm/s), for either hemisphere. At gyre-scales, SH has noticeably higher energy density than NH. This 
asymmetry is balanced by an opposing asymmetry over the mesoscales, where NH has higher KE density, which 
is more readily detectable in the filtering spectra. The NH-SH asymmetry can be attributed to basin geometry 
and continental boundaries. The NH ocean basins are land-constrained relative to the SH, which has more room 
for a larger-scale flow, namely the ACC, to develop and intensify. We shall see in Table 1 below that most of 
the hemispheric asymmetry resides in the stationary time-mean flow. The stronger (energy-per-area) mesos-

Figure 6. Decomposition of geostrophic kinetic energy from AVISO for the Atlantic basin from a time averaging (Reynolds) 
decomposition. Left panel: total energy, 𝐴𝐴 (𝐱𝐱, 𝑡𝑡) at a single day. Left middle panel: 9-year time mean, MKE(x). Right middle 
panel: fluctuating eddy term, EKE(x, t). Right panel: the cross term required to recover the total geostrophic energy as 
defined in Equation 18.
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cale flow in the NH is stationary and is most probably due to the time-invariant forcing exerted by continental 
boundaries. This can explain our observation in Figure 8 (middle panel) that NH mesoscales are more intense 
than in the SH.

4.3.2. Filtering Spectra

The full time filtering spectra in Figure 8 have been previously reported in Storer et al. (2022). Here, we extend 
previous results by incorporating CG spectra of the time-mean and time-varying RA components. As might be 
expected, the time-mean velocity peaks spectrally at large scales (ℓ > 10 3 km), while the time-varying component 
peaks over the mesoscales. This may misleadingly suggest that time-averaging produces a scale separation to a 
good approximation. However, as will be shown later in this subsection, the mesoscale energy (area under the 
spectrum plot) accounts for a majority of the time-mean energy. Therefore, as we are going to show, the time-
mean flow is dominated by stationary small-scales structures <500 km in size. The length-scale at which spectra 
of the time-varying and time-mean velocity cross is slightly larger than 500 km.

4.3.3. Proportion of Energy in Mesoscales

In Table 1 we present the KE of the RA components partitioned at 500 km for the NEMO data set. There are three 
primary conclusions that can be drawn from Table 1. (a) While mesoscales are dominated by time-varying flow, 
the majority of the time-mean energy is also in the mesoscales. (b) The geostrophic time-varying flow is nearly 
entirely mesoscale, with only a few percentage points in larger scales. It is important to recall, however, that this 
analysis excludes ageostrophic motions, such as the Ekman flow. (c) While the full and time-varying velocities 
are generally consistent between hemispheres, the time-mean velocity shows strong asymmetry. Specifically, 
time-mean mesoscales are stronger in NH, while time-mean gyre-scales are stronger in SH. A likely contributor 
to the latter is the ACC. In the NH, there is stronger stationary forcing at the mesoscales relative to the SH due  to 
more restrictive continental boundaries. Nearly identical results are found from the RA decomposition applied 
over the 9-year AVISO data set, shown in Appendix B.

4.3.4. RMS Velocity in Major Currents

By integrating the filtering spectrum over a scale band, we can obtain the total KE for the chosen scale band and, 
subsequently, the RMS velocity for that range of spatial scales. Table 2 presents these RMS velocity magnitudes 
from NEMO for a selection of geographic regions: NH, SH, ACC, Gulf Stream, and Kuroshio, both within the 

Figure 7. Top panel: Time-series of total geostrophic kinetic energy (KE), 𝐴𝐴 {(𝐱𝐱)}(𝑡𝑡) (blue), and the fluctuating component, 
𝐴𝐴 {𝐸𝐸𝐸𝐸𝐸𝐸(𝐱𝐱)}(𝑡𝑡) (orange), in the North (solid line) and South (dashed line) from the AVISO analysis. Vertical grid lines indicate 

the start of each quarter-year (01Jan, 01Apr, 01Jul, 01Oct). Bottom panel: Time-series of the cross term (blue) and KE of 
the 9-year mean, {MKE(x)} (orange), in the North (solid line) and South (dashed line). EKE constitutes a substantial portion 
of the total energy and with an almost indistinguishable temporal variation. Here, we show only 6.5 years of the full 9-year 
record. Plots shown use a 4-day sampling frequency, but averages are based on a 1-day sampling of the 9-year record.
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mesoscale (100–500 km) and gyre-scale (>10 3 km) scale-bands. The region 
definitions are included in Appendix C. Note that mesoscales are stronger in 
NH than SH, while gyre-scales are stronger in SH.

Extrapolating to Smaller Scales Both NEMO and AVISO datasets agree well 
on the spectral energy density of the mesoscales, down to ≈100 km, where 
resolution effects begin to cause deviations (Amores et al., 2018; Ballarotta 
et al., 2019).

Knowing the energy contained at 100 km, we can analytically integrate the 
total energy that would be contained below 100 km, assuming two differ-
ent theoretically plausible slopes, namely 𝐴𝐴 𝐴𝐴

−3

𝓁𝓁
 and 𝐴𝐴 𝐴𝐴

−5∕3

𝓁𝓁
 . These power-laws 

are interesting because they are the theoretical predictions for the spectrum 
of an ideal turbulent flow in two and three dimensions respectively. Even 
though the ocean is far from being an ideal flow, this exercise can give a 
“back-of-the-envelope” estimate of the energy content of the small scales. If 
we let S100km denote the spectral energy density for ℓ = 100 km, and assume 
a spectral scaling of k −α spanning all scales smaller than 100 km, then we can 
compute the total amount of energy in scales smaller than 100 km as

Figure 8. Power Spectra [Top]: Cumulative surface geostrophic kinetic energy spectra, 𝐴𝐴 𝓁𝓁 , as a function of scale ℓ, obtained from both the AVISO and NEMO products 
in the North and South. [Middle and bottom]: Filtering spectra obtained following Equation 12 for the full (solid lines), time mean (dashed times), and time-varying 
(dotted liens) ssh-derived geostrophic velocity from the NEMO data set. Note that both middle and bottom panels show the same data, but using lin-log and log-log 
scales respectively.

Full Velocity Time-Mean Time-Varying

ℓ < 500 km [10 −2 m 2/s 2] NH 2.1 0.36 1.7

SH 2.0 0.25 1.8

ℓ > 500 km [10 −2 m 2/s 2] NH 0.20 0.15 0.06

SH 0.22 0.19 0.04

ℓ < 500 km [% of Total] NH 91 71 97

SH 90 57 98

Note. Presented values are the median (50th percentile) in time from the 
NEMO data set. The percentages in the bottom row are the amount of energy 
at scales smaller than 500 km with repsect to the total energy in all scales, 
restricted to each hemisphere and time-component.

Table 1 
Mesoscale Energy for Reynolds' Components the Area-Mean Kinetic Energy 
Partitioned at 500 km for Each Hemisphere (Equivalent to the Top Panel 
of Figure 8), for the Three Reynolds' Components: Full 𝐴𝐴 (𝐱𝐱, 𝑡𝑡) , Time-Mean 
MKE(x), and Time-Varying Velocity EKE(x, t)



Journal of Advances in Modeling Earth Systems

BUZZICOTTI ET AL.

10.1029/2023MS003693

17 of 28

lim
𝑛𝑛→∞∫
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−5
, (21)

or, alternatively, to only consider the decade spanning 10–100 km,

∫

10−4

𝑘𝑘𝓁𝓁=10
−5

𝑆𝑆100km10
−5𝛼𝛼

𝑘𝑘
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1

𝛼𝛼 − 1
𝑆𝑆100km10

−5
[

1 − 101−𝛼𝛼
]

, (22)

where we assume that α > 1. Using Equations 21 and 22 and the 100 km 
values presented in Figure 8, we can then compute the amount of energy in 
scales smaller than 100 km as a percentage of energy across all scales. These 
values are presented in Table 3 and reveal that as much as 25%–50% of the 
surface geostrophic KE is contained in scales smaller than 100 km. These 
scales are un(der)-resolved by pre-SWOT satellite products. Our estimates 
are contingent on a persistent power-law scaling over small scales, but they 
nevertheless illustrate how a substantial proportion of surface geostrophic 
energy may be missed by coarse resolution.

4.3.5. Zonally-Averaged Coarse Energy

In Figure 9 we plot the zonally-averaged KE for selected length-scale bands. 
Scales larger than 10 3 km (blue plot in Figure 9) have a dominant contri-

bution from latitudes [60°S, 40°S], which roughly corresponds with the ACC. However, these latitudes are no 
longer dominant when considering the band of smaller scales: 215 km < ℓ < 10 3 km. These scales (orange plot 
in Figure 9) show a distinct signal at latitudes [30°N, 40°N], which roughly aligns with the Gulf Stream and 
Kuroshio. There is also a weaker signal at latitudes [40°S, 35°S], which roughly aligns with the Agulhas and the 
Brazil-Malvinas currents.

4.4. Spatio-Temporal Decomposition

In this section, we present results from coarse-graining in both space and time to reveal all the length-scales pres-
ent in the time-averaged currents up to 9-year temporal mean. Our analysis demonstrates a way for comparing 
data from satellite analysis (AVISO) and numerical models (NEMO).

The approach consists of measuring the filtering spectrum of a temporally-smoothed version of the original 
velocity field. The latter is obtained from a running window time average,

⟨𝐮𝐮⟩𝜏𝜏 (𝐱𝐱, 𝑡𝑡) =
1

𝜏𝜏 ∫

𝑡𝑡+𝜏𝜏∕2

𝑡𝑡−𝜏𝜏∕2

𝐮𝐮

(

𝐱𝐱, 𝑡𝑡
′
)

d𝑡𝑡′, (23)

with τ the size of the time window. Note that a running window time-average in Equation 23 is similar to spatial 
coarse-graining (Equation 1) since

⟨⟨𝐹𝐹 ⟩𝜏𝜏⟩𝜏𝜏 ≠ ⟨𝐹𝐹 ⟩𝜏𝜏 . (24)

Combining Equation 12 with Equation 23 allows us to measure the filtering 
energy spectrum of the time-smoothed field

𝐸𝐸(𝑘𝑘𝓁𝓁 , 𝜏𝜏) =

⟨

𝑑𝑑

𝑑𝑑𝑘𝑘𝓁𝓁

{

1

2
|

|

⟨𝐮𝐮𝓁𝓁⟩𝜏𝜏
|

|

2
}

⟩

=

⟨

𝑑𝑑

𝑑𝑑𝑘𝑘𝓁𝓁

{𝓁𝓁,𝜏𝜏}

⟩

, (25)

where we introduced

𝓁𝓁,𝜏𝜏 (𝐱𝐱, 𝑡𝑡) =
1

2

|

|

|

⟨
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⟩

𝜏𝜏

|

|

|

2

, (26)

Region

Mesoscales (100–500 km) Gyre-scales (>10 3 km)

Block 
region KE masked

Block 
region

KE 
masked

South of Tropics 15.0 — 5.3 —

ACC 16.4 28.1 7.0 9.7

North of Tropics 15.5 — 4.3 —

Gulf Stream 32.7 42.2 7.8 8.7

Kuroshio 26.5 40.0 8.1 10.1

Note. Note that there is no KE-masked variant of the NH and SH regions. 
Reported values are for the time median (50th percentile). Presented values 
are from the NEMO data set, and are all rounded to one decimal point.

Table 2 
RMS Current Speed [cm/s] in Select Regions the Area-Mean RMS Velocity 
Magnitude [cm/s] for Selected Regions Using Both Block and KE-Masked 
Definitions, See Appendix C

−α

AVISO NEMO

NH SH NH SH

−3 24% [24%] 25% [25%] 23% [23%] 25% [25%]

−5/3 43% [49%] 44% [50%] 41% [47%] 44% [50%]

Note. Values in brackets ([⋅]) arise from integrating all scales smaller than 
100 km assuming a constant power-law scaling of k −α.

Table 3 
Extrapolated Small-Scale Energy Percentage of Total Kinetic Energy 
Integrating Scales in the Decade Spanning 10–100 km
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which is the cumulative spectrum of the temporally-smoothed field. As indi-
cated, 𝐴𝐴 𝓁𝓁,𝜏𝜏 (𝐱𝐱, 𝑡𝑡) is a function of both the size of the time window, τ, and the 
spatial kernel, ℓ.

Time-Averaged Spatial Maps We show the time-smoothed energy map, 
𝐴𝐴 𝓁𝓁=0,𝜏𝜏 , in Figure  10 from AVISO. Here, the two columns compare results 

from the North and the South regions, while different rows compare results 
with different time windows, τ. From these maps we can see that increasing 
τ from 1 day to 1,093 days reduces the energy down to ≈21% (≈25%) of 
the original total energy in the North (South). Hence, averaging over 3 years 
brings the energy down to values comparable to those over the full 9 years 
obtained in the previous section by the RA decomposition, where we found 
that MKE accounts for ≈20% of the total energy in the extra-tropics. This 
result indicates that temporal averaging converges quickly for the geostrophic 
KE, and using longer time records does not significantly alter the partition-
ing between the temporal mean and fluctuating components of the surface 
geostrophic ocean flow.

4.5. Spatio-Temporal Comparison of AVISO and NEMO

We now demonstrate using a spatio-temporal coarse-graining, which may complement current efforts to 
disentangle balanced from unbalanced motions in SSH-derived flows. Figure 11 presents space-time 2-D spec-
tra, 𝐴𝐴 −⟨

𝑑𝑑

𝑑𝑑𝑑𝑑

𝑑𝑑

𝑑𝑑𝑑𝑑𝓁𝓁

{𝓁𝓁,𝑑𝑑}⟩ , which decomposes the energy as measured from AVISO and NEMO. In the left (right) 
column of Figure 11 we show the isolevels of space-time spectra from NEMO (AVISO). Note that the NEMO 
spectra extend to smaller length scales due to having higher spatial resolution, but that the panels have consistent 
spacing/aspect ratios. The most pronounced difference is that the AVISO isocontours are more circular, while 
NEMO isocontours or more elongated and tilted, hinting at an ℓ − τ relationship. In both datasets, energy peaks 
at approximately ℓ = 200 km and τ = 2 − 3 weeks.

Time-averaging to Align Spectra Remember that for the entire analysis in this paper, we are using 1-day averages 
of SSH to derive velocity from the NEMO data. While the SSH from AVISO is also available daily, it is effec-
tively averaged over longer periods of time to produce gridded SSH maps from along-track altimeter data. We 
propose that the difference between isocontours from AVISO and NEMO in Figure 11 comes from the optimal 
interpolation used to produce the gridded AVISO product (Pujol et al., 2016), which is necessary to construct 
the global maps from satellite altimeters' along-track data. To support this hypothesis, in Figure 12 we show the 

Figure 9. Time- and zonally-averaged kinetic energy computed from AVISO 
within selected length-scale bands (see in-set legend) as a function of latitude. 
We can see that the Antarctic Circumpolar Current has significant energy at 
scales >10 3 km, while the North has significant energy within ≈30°N–40°N 
where the Western Boundary Currents are located. Note that the latitude axis 
is broken to exclude the band [15°S, 15°N].

Figure 10. The surface geostrophic kinetic energy (KE) from the temporally coarse-grained flow, 𝐴𝐴 𝓁𝓁=0,𝜏𝜏 , in the North (left 
column) and South (right column) from AVISO. The top row shows the original 1-day averaged flow. The middle and bottom 
rows show the KE from the flow when averaged with a ≈6 months time window and a ≈3 years time window, respectively, with 
the KE decreasing with an increasing time window. Each panel indicates the % of KE remaining relative to the 1-day top row.
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spectra as a function of τ measured from AVISO and NEMO. In this plot, 
we have repeated the analysis of  the NEMO spectra after passing the data 
through a 7-day running time average (green line), which reproduces the  time 
average over the satellite orbits. We  can see that the green curve overlaps the 
AVISO measurement (blue) very closely, supporting our hypothesis. This is 
similar to what was observed in Biri et al. (2016); Chassignet and Xu (2017) 
who performed a similar exercise on the AVISO altimeter spectrum and 
also in what was found in Arbic et al. (2014); Khatri et al. (2018); Renault 
et al. (2019) who compared the cascade of AVISO and model data and deter-
mined that AVISO's spectral fluxes can be reproduced from model data after 
filtering the latter in both space and time.

Possible Role of Unbalanced Motions What component of the flow could 
be yielding the discrepancy between NEMO and AVISO? The most obvi-
ous possibility is unbalanced motion present in the 1-day mean SSH fields 
of NEMO that is absent from AVISO due to the effective weekly averag-
ing required for gridding the satellite measurements. However, unbalanced 
motion had been believed to be important mostly over length-scales ≲100 km 
and time-scales ≲2 days (e.g., Richman et al., 2012; Qiu et al., 2018). If our 
conjecture is correct, it would imply that unbalanced motion is present at all 
scales between 200 km to 10 3 km, with significant differences even between 

Figure 11. Combined spatio-temporal coarse-graining producing 2D spectra, 𝐴𝐴 −𝜕𝜕𝜏𝜏𝜕𝜕𝑘𝑘𝓁𝓁𝓁𝓁,𝜏𝜏 from [left] 1/12° NEMO and [right] AVISO, averaged over the [top] NH and 
[bottom] SH. Mesoscale energy predominantly peaks on length-scales of 100–200 km and time-scales of 1–3 weeks. Green diamonds indicate, for each ℓ, the τ at 
which spectral power is maximized (cf. Figure 13).

Figure 12. Evidence that the disagreement between AVISO and NEMO over 
time-scales ≲10 days is due to temporal averaging used in generating the 
gridded AVISO product. Here, we show temporal spectra from AVISO (blue) 
and NEMO (red) in the North (solid lines) and South (dashed lines), which 
disagree over τ ≲ 10 days as in Figure 11. However, the temporal spectra 
from NEMO agree with those from AVISO after applying a 7-day temporal 
smoothing to the original NEMO velocities (green). This result supports our 
hypothesis that AVISO is missing dynamical information at time-scales less 
than 10 days due to temporal smoothing over all length-scales.
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1–2 × 10 3 km and τ ≈ 1–10 days as shown in Figure 11, requiring averaging over a few days to be removed. 
Isolating balanced from unbalanced motions (e.g., Bühler et al., 2014) is an active research topic that is beyond 
the scope of this work. Another possible explanation can be found in the time-smoothing of balanced motions, 
which is inherent in the construction of the AVISO data set. Indeed in (Arbic et al., 2013, 2014) they removed 
high-frequency motions with a 3-day low-pass filter before applying spectral analysis and they obtained similar 
results as the ones we observed here.

4.5.1. Relating Time-Scale to Length-Scale

As discussed, Figure 11 shows a clear mesoscale spectral structure centered roughly on 200 km and 14 days. In 
Figure 13 we present for each spatial scale ℓ, the time-scale τ for which 𝐴𝐴 −𝜕𝜕𝜏𝜏𝜕𝜕𝑘𝑘𝓁𝓁𝓁𝓁,𝜏𝜏 is maximized. We use cubic 
interpolation in the τ-dimension to compensate for only having data points for an odd integer number of days. 
These results are broadly similar between hemispheres, however, there are noticeable disagreements between 
NEMO and AVISO. The two agree on the time scale of the largest mesoscales (400–500 km), with AVISO 
consistently yielding longer time scales than NEMO for smaller ℓ. NEMO presents τ ∼ ℓ over the mesoscale 
band, while AVISO gives τ ∼ ℓ 0.4.

4.5.2. Connection to Space-Time Spectra in the Literature

Figure 11 shows the importance of performing a combined spatio-temporal decomposition to access all infor-
mation in the data. Our method is similar to frequency-wavenumber analysis performed within Fourier boxes by 
several recent studies: Arbic et al. (2014) were interested in mesoscale-driven intrinsic low-frequency variabil-
ity, while Savage et al. (2017); Qiu et al. (2018); Torres et al. (2018) were primarily motivated by isolating the 
unbalanced motions from SSH-derived velocities. Our Figure 11 is analogous, for example, to Figure 4 in Arbic 
et al. (2014) and to Figure 3 in Torres et al. (2018), although the latter analyzed higher frequencies than those 
that are available in the datasets that we study here. It is important to stress that high-frequency forcing was not 
employed in the production of the NEMO model data used in our work and high-frequency motions are not our 
current focus of interest, while the latter works employed models with simultaneous atmospheric and tidal forc-
ing which entails the formation of an internal gravity wave continuum spectrum as first described in Muller and 
Bony (2015), Rocha et al. (2016). However, as we mentioned in the introduction, the coarse-graining approach 
gives us access to the global energy budget and, moreover, frees us from the limitations of Fourier boxes and 
the required tapering and detrending. As such, the approach here complements previous frequency-wavenumber 
analysis by allowing us to access much larger length-scales.

A common feature between our Figure 11 and those in previous studies is a slight elongation of isocontours along 
the diagonal from small to large spatio-temporal scales in the main panel of our Figure 11. Such elongation is 

Figure 13. Mesoscale τ-ℓ Relationship For each filter scale (ℓ), the time-scale (τpeak) for which the power spectrum 
𝐴𝐴

(

−𝜕𝜕𝜏𝜏𝜕𝜕𝑘𝑘𝓁𝓁𝓁𝓁,𝜏𝜏

)

 is maximized. While dashed lines show regression fits (see legend for regression formulas), which express τ [s] 
in terms of ℓ [m].
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most prominent in Figure 3 of Torres et al. (2018), who were probing scales <100 km and from roughly 3 hr 
to 40 days. The diagonal elongation of isocontours represents a slight tendency for larger length-scales to have 
longer time-scales.

However, we emphasize that unlike in Torres et al. (2018), such tendency is only slight over the larger scales we 
analyze here. In fact, an important take-away from Figure 11 is that all length-scales evolve over a wide range 
of time-scales. Consider, for example, ℓ ≈ 500 km in the left column of Figure 11 at different τ values. We see 
that the isoline is almost vertical over τ ≈ 5 days to τ ≈ 50 days, indicating that flow at 500 km has an equal 
contribution from all these time-scales. We also see that both AVISO and NEMO isolines get flatter (stretched 
horizontally) as τ increases, such that at τ ≈ 300 days, there is almost equal energy at all scales between ≈100 km 
and ≈10 3 km.

5. Conclusions
5.1. Summary of the Main Results

In this paper we expanded on a recent calculation of the first global energy spectrum of the ocean's surface 
geostrophic circulation (Storer et al., 2022) using the coarse-graining (CG) method. Our analysis here gives new 
insights into the oceanic circulation. The method is implemented in an open-source software, FlowSieve (Storer 
& Aluie, 2023), that can be accessed at https://github.com/husseinaluie/FlowSieve.

In this work, we compare quantitatively the CG and the spherical harmonics decompositions. While the two 
methods yield qualitatively consistent domain-averaged results, spherical harmonics spectra are too noisy at 
gyre scales. More importantly, spherical harmonics are inherently global and cannot provide local information 
connecting scales with currents geographically.

We have estimated that the RMS velocity of the mesoscales is globally around 15 cm/s, but it increases up to 
30–40 cm/s in the Kuroshio or the Gulf Stream and up to 16–28 cm/s in the ACC. We find notable hemispheric 
asymmetry in mesoscale energy-per-area, which is higher in the north, bringing to the fore the significance of 
domain geometry. Indeed, mesoscales can arise from boundary forcing, which is coherent in time and is distinct 
from the baroclinic instability often discussed as the main driver of mesoscales.

In this paper, we applied the coarse-graining approach to the Reynolds decomposed fields, namely the time-
mean and the time-varying terms of the ocean surface currents. Results in this direction highlight that while the 
time-varying term is largely dominated by the mesoscales, (≈98%), the time-mean component also has a major-
ity (up to 70%) contribution from the mesoscale circulation. This highlights the preponderance of “standing” 
small-scale structures in the global ocean and the potentially significant role played by forcing from the ocean 
boundaries, which is temporally coherent. It also shows that Reynolds decomposition is an ineffective method for 
disentangling eddy structures from the flow.

By coarse-graining in both space and time, we have shown that every length-scale evolves over a wide range of 
time-scales. This result makes us appreciate the significance of temporally coherent (even stationary) forcing 
mechanisms acting on the mesoscales, such as bottom topography and continental boundaries. An important new 
contribution of this work is the spatio-temporal spectra of the geostrophic currents. These 2D spectra highlight 
how the mesoscales while peaking at ≈(200 km, 2 weeks), are not only diffused over a range of spatial scales, 
but also vary over a wide range of temporal scales. Further, we extract the dominant time-scale, τpeak for each 
filter scale in the mesoscale band, and find that NEMO predicts τ ∼ ℓ, which leads to a length scale-independent 
advective velocity of 0.15–0.2 cm/s. In contrast, AVISO demonstrates consistently longer dominant time-scales, 
and a shallower relationship of τ ∼ ℓ 0.4, both of which are likely results of the time averaging needed to extract 
the AVISO velocity maps.

5.2. Coarse-Graining and the Filtering Spectrum

The coupling between different length- and time-scales and between different geographic regions presents a 
major difficulty in understanding, modeling, and predicting oceanic circulation and mixing. Indeed, the oceanic 
KE budget is estimated to suffer from large uncertainties (Ferrari & Wunsch, 2009). A major reason behind 
these difficulties is a lack of scale-analysis methods that are appropriate in the global ocean. In this paper, 

https://github.com/husseinaluie/FlowSieve
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we have demonstrated the versatility of coarse-graining in serving as a robust scale-analysis method for the 
global ocean circulation that complements existing methods. The approach is very general, allows for prob-
ing the dynamics simultaneously in scale and in space, and is not restricted by assumptions of homogeneity 
or isotropy commonly required for traditional methods such as Fourier or structure-function analysis. We note 
that coarse-graining includes wavelet analysis (Uchida et al., 2023) as a special case with the proper choice of 
convolution kernel, which disentangles the flow from a band of scales instead of partitioning it into large-scales 
and small-scales (Sadek & Aluie, 2018). Coarse-graining offers a way to probe and quantify the energy budget 
at different length-scales globally while maintaining local information about the heterogeneous oceanic regions. 
We view this work as an important step toward constructing a scale-aware global Lorenz Energy Cycle for the 
ocean circulation (Loose et al., 2023).

Appendix A: Deforming the Kernel Around Land
As outlined in Section 3.1, filtering with a constant kernel while treating land as zero-velocity water and includ-
ing land cells (“Fixed Kernel w/Land”) in the final tally is guaranteed to conserve 100% of the energy, while 
excluding land cells and integrating only over water cells (“Fixed Kernel w/o Land”) leads to a loss of about 11% 
of the total KE at a filter scale of 2,000 km (see Figure 2). This result follows since some of the KE “smears” onto 
the land cells, which are then excluded from the spatial integrals.

An alternative approach is to deform the kernel around land (“Deforming Kernel”) so that only water cells are 
incorporated in the filtering operation. This approach has the advantage of not needing to treat land as water, yet 
we have shown in Figure 2 that this choice still does not conserve 100% of the energy, sometimes even yielding 
larger values, albeit still within 1% error. Here, we explain why a deforming a kernel cannot be expected to yield 
100% of the energy, unlike the “Fixed Kernel w/Land.”

To illustrate how the loss of energy conservation can happen with the Deforming Kernel method, consider a 
one-dimensional domain with five equally spaced points and a simple kernel that has a weight of 2 at the target 
point, 1 at neighboring points, and 0 otherwise.

If the domain were periodic then the filtering operation could be represented as the matrix

� ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1∕2 1∕4 0 0 1∕4

1∕4 1∕2 1∕4 0 0

0 1∕4 1∕2 1∕4 0

0 0 1∕4 1∕2 1∕4

1∕4 0 0 1∕4 1∕2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

 (A1)

such that 𝐴𝐴 KE = 𝐺𝐺 ⋅ KE , where KE is a column vector. Note that the sum of each row of G is 1, a result of normal-
izing the kernel (assuming a grid spacing of 1 for simplicity). Domain integrating in this scenario is simply 
left-multiplying by the row vector S≔[1, 1, 1, 1, 1], which is equivalent to taking a column-wise sum. Since 
S ⋅ G = S, 𝐴𝐴 𝐴𝐴 ⋅ KE = 𝐴𝐴 ⋅ 𝐺𝐺 ⋅ KE = 𝐴𝐴 ⋅ KE , and so the domain-integrated KE is conserved.

However, if the domain is non-periodic (such as if the edges were “land”), then the deforming kernel that excludes 
anything outside the boundaries would be

� ∶=

⎡

⎢
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In this case, S ⋅ G = [11/12, 13/12, 1, 13/12, 11/13] ≠ S, and so in general 𝐴𝐴 𝐴𝐴 ⋅ KE ≠ 𝐴𝐴 ⋅ KE . Moreover, there is 
no guarantee that 𝐴𝐴 𝐴𝐴 ⋅ KE ≤ 𝐴𝐴 ⋅ KE , and so it may be that the total filtered KE exceeds the total unfiltered KE.

As observed, in general, the error arising from deforming the kernel will be much smaller than that of treat-
ing land as zero-velocity water and only integrating over true water cells, especially for large filter kernels. 
However, again, it is worth recognizing that deforming the kernel does not guarantee energy conservation. To 
fully conserve energy and maintain commutativity with differentiation, we choose the “Fixed Kernel w/Land” 
option, which treats land as zero-velocity water and includes land cells in spatial integrals to compute total 
energy.

Appendix B: Reynolds Averaging Spectra on AVISO Dataset
Figure B1 reports the energy spectra for the time-mean and time-varying RA components obtained from the 
9-year AVISO data set. Results are in very good agreement with the spectra obtained from NEMO data set, 
presented in Figure 8. The values obtained from the two datasets are nearly identical, with the AVISO data set 
having less small-scale energy owing to having a lower resolution.

Appendix C: Geographic Definitions for Current Regions
Equations C2–C6 outline the geographic constraints used to define the various regions used in Table 2. In each 
definition, λ is longitude in degrees, ranging from −180 to 180, and ϕ is latitude in degrees, ranging from −90 
to 90. Additionally, any overlap with land is removed from the region definition, so that only water cells are 
included. The region masks are presented in Figure C1.

Figure B1. Power Spectra Filtering spectra obtained following Equation 12 for the full (solid lines), time mean (dashed times), and time-varying (dotted liens) 
ssh-derived geostrophic velocity from the AVISO data set. Note that both top and bottom panels show the same data, but using lin-log and log-log scales respectively.
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Energy Masking Following Rai et al. (2021), subsets of the regions defined in Equations C2–C6 are produced by 
further restricting to areas with sufficiently high “masking KE.” For these purposes, a combination of time-mean 
and time-varying KE is used such that

Masking KE =
1

2
𝜌𝜌0⟨𝐮𝐮⟩

2
+

1

2
𝜌𝜌0

⟨

(𝐮𝐮 − ⟨𝐮𝐮⟩)
2
⟩

. (C1)

Taking ρ0 = 1,025, a cut-off of Masking KE > 50 is applied to the Gulf Stream and Kuroshio, and Masking 
KE > 30 to the ACC. The KE-masked regions are illustrated with dots in Figure C1.

����� �� ������� ∶ � > 15◦ (C2)

�������� ∶ {120◦ < � < 170◦}

��� {17◦ < � < 45◦}

��� {� ≤ (3∕4)� − 60◦}

��� {��� (� < 25◦ ��� � ≥ 140◦)}

��� {��� (� ≤ 140◦ ���� < (2∕5)� − 31◦)}

 (C3)

���� ������ ∶ {−80.75◦ < � < −35◦} ��� {|� − (2∕5)� − 62◦| ≤ 6◦} (C4)

����� �� ������� ∶ � < −15◦ (C5)

��� ∶ {−70◦ < � < −33◦}

��� {��� (� < −72◦) ���� > −(5∕108)� − 160∕3◦}

��� {��� (� > 20◦) ���� > −(3∕40)� − 63∕2◦}

 (C6)

Figure C1. Illustration of the geographic region definitions (Equations C2–C6), plotted over a sample velocity field for 
reference. Note that “North of Tropics” and “South of Tropics” are not included, but are simply the portions North and South 
of “Tropics.” For “Kuroshio,” “Gulf Stream,” and “ACC,” the smaller contoured region with dots shows the region definition 
with an additional kinetic energy mask.
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Data Availability Statement
This study has been conducted using E.U. Copernicus Marine Service Information. The product identifier of 
the AVISO dataset used in this work is (AVISO, 2021), and can be downloaded at https://marine.copernicus.
eu/services-portfolio/access-to-products/. The product identifier of the NEMO dataset is (NEMO, 2021), and 
is available at https://marine.copernicus.eu/services-portfolio/access-to-products/. The source code for the 
coarse-graining software FlowSieve (Storer & Aluie, 2023) has been archived on Zenodo [https://doi.org/10.5281/
zenodo.7818192, URL: https://doi.org/10.5281/zenodo.7818192].
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